Serveur d'exploration sur le phanerochaete

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Role of disulfide bonds in the stability of recombinant manganese peroxidase.

Identifieur interne : 000A25 ( Main/Exploration ); précédent : 000A24; suivant : 000A26

Role of disulfide bonds in the stability of recombinant manganese peroxidase.

Auteurs : N S Reading [États-Unis] ; S D Aust

Source :

RBID : pubmed:11434786

Descripteurs français

English descriptors

Abstract

Phanerochaete chrysosporium manganese peroxidase (MnP) [isoenzyme H4] was engineered with additional disulfide bonds to provide structural reinforcement to the proximal and distal calcium-binding sites. This rational protein engineering investigated the effects of multiple disulfide bonds on the stabilization of the enzyme heme environment and oxidase activity. Stabilization of the heme environment was monitored by UV-visible spectroscopy based on the electronic state of the alkaline transition species of ferric and ferrous enzyme. The optical spectral data confirm an alkaline transition to hexacoordinate, low-spin heme species for native and wild-type MnP and show that the location of the engineered disulfide bonds in the protein can have significant effects on the electronic state of the enzyme. The addition of a single disulfide bond in the distal region of MnP resulted in an enzyme that maintained a pentacoordinate, high-spin heme at pH 9.0, whereas MnP with multiple engineered disulfide bonds did not exhibit an increase in stability of the pentacoordinate, high-spin state of the enzyme at alkaline pH. The mutant enzymes were assessed for increased stability by incubation at high pH. In comparison to wild-type MnP, enzymes containing engineered disulfide bonds in the distal and proximal regions of the protein retained greater levels of activity when restored to physiological pH. Additionally, when assayed for oxidase activity at pH 9.0, proteins containing engineered disulfide bonds exhibited slower rates of inactivation than wild-type MnP.

DOI: 10.1021/bi010440i
PubMed: 11434786


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Role of disulfide bonds in the stability of recombinant manganese peroxidase.</title>
<author>
<name sortKey="Reading, N S" sort="Reading, N S" uniqKey="Reading N" first="N S" last="Reading">N S Reading</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biotechnology Center, Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-4705, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biotechnology Center, Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-4705</wicri:regionArea>
<wicri:noRegion>Utah 84322-4705</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Aust, S D" sort="Aust, S D" uniqKey="Aust S" first="S D" last="Aust">S D Aust</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2001">2001</date>
<idno type="RBID">pubmed:11434786</idno>
<idno type="pmid">11434786</idno>
<idno type="doi">10.1021/bi010440i</idno>
<idno type="wicri:Area/Main/Corpus">000A46</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000A46</idno>
<idno type="wicri:Area/Main/Curation">000A46</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000A46</idno>
<idno type="wicri:Area/Main/Exploration">000A46</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Role of disulfide bonds in the stability of recombinant manganese peroxidase.</title>
<author>
<name sortKey="Reading, N S" sort="Reading, N S" uniqKey="Reading N" first="N S" last="Reading">N S Reading</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biotechnology Center, Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-4705, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biotechnology Center, Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-4705</wicri:regionArea>
<wicri:noRegion>Utah 84322-4705</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Aust, S D" sort="Aust, S D" uniqKey="Aust S" first="S D" last="Aust">S D Aust</name>
</author>
</analytic>
<series>
<title level="j">Biochemistry</title>
<idno type="ISSN">0006-2960</idno>
<imprint>
<date when="2001" type="published">2001</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alkalies (chemistry)</term>
<term>Calcium (chemistry)</term>
<term>Disulfides (chemistry)</term>
<term>Enzyme Activation (genetics)</term>
<term>Enzyme Stability (genetics)</term>
<term>Ferric Compounds (chemistry)</term>
<term>Ferrous Compounds (chemistry)</term>
<term>Manganese (chemistry)</term>
<term>Mutagenesis, Site-Directed (MeSH)</term>
<term>Peroxidases (antagonists & inhibitors)</term>
<term>Peroxidases (chemistry)</term>
<term>Peroxidases (genetics)</term>
<term>Phanerochaete (enzymology)</term>
<term>Recombinant Proteins (chemistry)</term>
<term>Spectrophotometry, Ultraviolet (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Activation enzymatique (génétique)</term>
<term>Alcalis (composition chimique)</term>
<term>Calcium (composition chimique)</term>
<term>Composés du fer II (composition chimique)</term>
<term>Composés du fer III (composition chimique)</term>
<term>Disulfures (composition chimique)</term>
<term>Manganèse (composition chimique)</term>
<term>Mutagenèse dirigée (MeSH)</term>
<term>Peroxidases (antagonistes et inhibiteurs)</term>
<term>Peroxidases (composition chimique)</term>
<term>Peroxidases (génétique)</term>
<term>Phanerochaete (enzymologie)</term>
<term>Protéines recombinantes (composition chimique)</term>
<term>Spectrophotométrie UV (MeSH)</term>
<term>Stabilité enzymatique (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="antagonists & inhibitors" xml:lang="en">
<term>Peroxidases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Alkalies</term>
<term>Calcium</term>
<term>Disulfides</term>
<term>Ferric Compounds</term>
<term>Ferrous Compounds</term>
<term>Manganese</term>
<term>Peroxidases</term>
<term>Recombinant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="antagonistes et inhibiteurs" xml:lang="fr">
<term>Peroxidases</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Alcalis</term>
<term>Calcium</term>
<term>Composés du fer II</term>
<term>Composés du fer III</term>
<term>Disulfures</term>
<term>Manganèse</term>
<term>Peroxidases</term>
<term>Protéines recombinantes</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Phanerochaete</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Phanerochaete</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Enzyme Activation</term>
<term>Enzyme Stability</term>
<term>Peroxidases</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Activation enzymatique</term>
<term>Peroxidases</term>
<term>Stabilité enzymatique</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Mutagenesis, Site-Directed</term>
<term>Spectrophotometry, Ultraviolet</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Mutagenèse dirigée</term>
<term>Spectrophotométrie UV</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Phanerochaete chrysosporium manganese peroxidase (MnP) [isoenzyme H4] was engineered with additional disulfide bonds to provide structural reinforcement to the proximal and distal calcium-binding sites. This rational protein engineering investigated the effects of multiple disulfide bonds on the stabilization of the enzyme heme environment and oxidase activity. Stabilization of the heme environment was monitored by UV-visible spectroscopy based on the electronic state of the alkaline transition species of ferric and ferrous enzyme. The optical spectral data confirm an alkaline transition to hexacoordinate, low-spin heme species for native and wild-type MnP and show that the location of the engineered disulfide bonds in the protein can have significant effects on the electronic state of the enzyme. The addition of a single disulfide bond in the distal region of MnP resulted in an enzyme that maintained a pentacoordinate, high-spin heme at pH 9.0, whereas MnP with multiple engineered disulfide bonds did not exhibit an increase in stability of the pentacoordinate, high-spin state of the enzyme at alkaline pH. The mutant enzymes were assessed for increased stability by incubation at high pH. In comparison to wild-type MnP, enzymes containing engineered disulfide bonds in the distal and proximal regions of the protein retained greater levels of activity when restored to physiological pH. Additionally, when assayed for oxidase activity at pH 9.0, proteins containing engineered disulfide bonds exhibited slower rates of inactivation than wild-type MnP.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">11434786</PMID>
<DateCompleted>
<Year>2001</Year>
<Month>09</Month>
<Day>27</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>06</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0006-2960</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>40</Volume>
<Issue>27</Issue>
<PubDate>
<Year>2001</Year>
<Month>Jul</Month>
<Day>10</Day>
</PubDate>
</JournalIssue>
<Title>Biochemistry</Title>
<ISOAbbreviation>Biochemistry</ISOAbbreviation>
</Journal>
<ArticleTitle>Role of disulfide bonds in the stability of recombinant manganese peroxidase.</ArticleTitle>
<Pagination>
<MedlinePgn>8161-8</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Phanerochaete chrysosporium manganese peroxidase (MnP) [isoenzyme H4] was engineered with additional disulfide bonds to provide structural reinforcement to the proximal and distal calcium-binding sites. This rational protein engineering investigated the effects of multiple disulfide bonds on the stabilization of the enzyme heme environment and oxidase activity. Stabilization of the heme environment was monitored by UV-visible spectroscopy based on the electronic state of the alkaline transition species of ferric and ferrous enzyme. The optical spectral data confirm an alkaline transition to hexacoordinate, low-spin heme species for native and wild-type MnP and show that the location of the engineered disulfide bonds in the protein can have significant effects on the electronic state of the enzyme. The addition of a single disulfide bond in the distal region of MnP resulted in an enzyme that maintained a pentacoordinate, high-spin heme at pH 9.0, whereas MnP with multiple engineered disulfide bonds did not exhibit an increase in stability of the pentacoordinate, high-spin state of the enzyme at alkaline pH. The mutant enzymes were assessed for increased stability by incubation at high pH. In comparison to wild-type MnP, enzymes containing engineered disulfide bonds in the distal and proximal regions of the protein retained greater levels of activity when restored to physiological pH. Additionally, when assayed for oxidase activity at pH 9.0, proteins containing engineered disulfide bonds exhibited slower rates of inactivation than wild-type MnP.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Reading</LastName>
<ForeName>N S</ForeName>
<Initials>NS</Initials>
<AffiliationInfo>
<Affiliation>Biotechnology Center, Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-4705, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Aust</LastName>
<ForeName>S D</ForeName>
<Initials>SD</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Biochemistry</MedlineTA>
<NlmUniqueID>0370623</NlmUniqueID>
<ISSNLinking>0006-2960</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000468">Alkalies</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004220">Disulfides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005290">Ferric Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005296">Ferrous Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011994">Recombinant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>42Z2K6ZL8P</RegistryNumber>
<NameOfSubstance UI="D008345">Manganese</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.-</RegistryNumber>
<NameOfSubstance UI="D010544">Peroxidases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.13</RegistryNumber>
<NameOfSubstance UI="C051129">manganese peroxidase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>SY7Q814VUP</RegistryNumber>
<NameOfSubstance UI="D002118">Calcium</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000468" MajorTopicYN="N">Alkalies</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002118" MajorTopicYN="N">Calcium</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004220" MajorTopicYN="N">Disulfides</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004789" MajorTopicYN="N">Enzyme Activation</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004795" MajorTopicYN="N">Enzyme Stability</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005290" MajorTopicYN="N">Ferric Compounds</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005296" MajorTopicYN="N">Ferrous Compounds</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008345" MajorTopicYN="N">Manganese</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016297" MajorTopicYN="N">Mutagenesis, Site-Directed</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010544" MajorTopicYN="N">Peroxidases</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020075" MajorTopicYN="N">Phanerochaete</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011994" MajorTopicYN="N">Recombinant Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013056" MajorTopicYN="N">Spectrophotometry, Ultraviolet</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2001</Year>
<Month>7</Month>
<Day>4</Day>
<Hour>10</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2001</Year>
<Month>9</Month>
<Day>28</Day>
<Hour>10</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2001</Year>
<Month>7</Month>
<Day>4</Day>
<Hour>10</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">11434786</ArticleId>
<ArticleId IdType="pii">bi010440i</ArticleId>
<ArticleId IdType="doi">10.1021/bi010440i</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Aust, S D" sort="Aust, S D" uniqKey="Aust S" first="S D" last="Aust">S D Aust</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Reading, N S" sort="Reading, N S" uniqKey="Reading N" first="N S" last="Reading">N S Reading</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhanerochaeteV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A25 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000A25 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhanerochaeteV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:11434786
   |texte=   Role of disulfide bonds in the stability of recombinant manganese peroxidase.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:11434786" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhanerochaeteV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Fri Nov 13 18:33:39 2020. Site generation: Fri Nov 13 18:35:20 2020